Relationships between thematic mapper radiances and tree community characteristics in the mayan biosphere reserve, Guatemala

J. M. Rey Benayas and K. O. Pope

Ecología, Facultad de Ciencias, Universidad de Alcalá, 28871 Alcalá de Henares (Madrid)

Geo Eco Arc Research, 2222 Foothill Blvd., Suite E-272, La Cañada, CA 91011, U.S.A

RESUMEN
Este artículo describe las relaciones existentes entre la topografía, composición y riqueza de las comunidades de árboles y la densidad y altura foliares, medidas en el campo, y los valores de radianza de cuatro bandas del Thematic Mapper a lo largo de un transecto de 750 m. localizado en los bosques tropicales estacionarios de la Reserva de la Biosfera Maya (Guatemala). Se distinguen cuatro unidades forestales en función de sus características medidas en el campo y las radianzas de las bandas TM3, TM4, TM5 y TM7. La posición topográfica estaba negativamente correlacionada con las radianzas de las bandas TM3, TM5 y TM7. La composición de las comunidades de árboles estaba negativamente correlacionada con las radianzas de estas tres bandas, y positivamente correlacionada con la radianza de la banda TM4. La riqueza de especies de árboles y la altura foliar estaban negativamente correlacionadas con la radianza de la banda TM3. La mayor parte de las relaciones observadas son consistentes con un estudio de teledetección a escala regional realizado anteriormente en la misma área.

PALABRAS CLAVE: árboles, composición, follaje, riqueza de especies, topografía.

ABSTRACT
This paper describes the relationships between topography, tree community composition and richness, foliage height and density measured in the field, and Thematic Mapper radiances for a 750-m transect located in the seasonal tropical forests of the Mayan Biosphere Reserve, Guatemala. Four forest units differed according to their characteristics as measured in the field and TM3, TM4, TM5, and TM7 radiances. Topographic position was negatively correlated with TM3, TM5, and TM7 radiances. The community composition was negatively correlated with TM3, TM5, and TM7 radiances, and positively correlated with TM4 radiances. Tree richness and foliage height were negatively correlated with TM3 radiances. Most of the observed relationships are consistent with a larger, landscape remote sensing study in the area.

KEY WORDS: composition, foliage, species richness, topography, trees.

INTRODUCCIÓN
Remote sensing techniques are becoming essential for the understanding of ecological patterns and its applications, such as vegetation mapping, land use planning (e.g. nature reserve design) and natural resource monitoring (Roughgarden et al. 1991, Roy et al. 1991, Saxon & Dudzinsky 1984, Westman et al. 1989). This paper contributes to highlight the relationships between ecological data from a seasonal tropical forest measured in the field and Landsat Thematic Mapper (TM) radiances.

For the same area and imagery considered here, Rey Benayas & Pope (1995) published a regional, larger area study of landscape ecology and diversity patterns. Based upon TM spectral radiances, they distinguished 6 land cover types corresponding to distinct forest units. Now we focus on a smaller area (community level) and the comparison of the results with the results obtained for the landscape study.

MATERIAL AND METHODS
The data were collected within the Mayan Biosphere Reserve in El Peten, Guatemala (coordinates are 17°40’N and 89°35’ W) (Figure 1) in April 1992 (dry season). The geomorphology of the El Peten is typical of tropical karst regions with conical hills, closed depressions, and falls within the subtropical moist Life Zone of Holdridge et al. (1971).

The imagery analysed corresponded to TM path 20, row 48, April 27, 1988.

To describe the relationships between TM radiances (bands 3, 4, 5, and 7) and tree community characteristics, we sampled a 750 m transect of the forest for tree communities (composition and species richness), canopy height and canopy density, upwards following the topographic relief. Me
altitudinal difference between the extreme points in the transect was of 100 m. This transect extended from lowland swamp forest to upland semi-evergreen forest, but did not include the highest upland forest nor the lowest lowland swamp as identified by Rey Benayas & Pope (1995). Trees 10 cm dbh within 20 10 m-diameter plots and 2.5 cm dbh within 20 concentric 2 m-diameter plots were accounted for. The smallest distance between adjacent plots was 20 m. Five plots per forest unit were sampled. The forest units were distinguished in the field by their physiognomic features. Canopy height and canopy density (number of times that a calibrated pole intersected branches with leaves) were recorded every 5 m along the transect.

To spatially coregister field samples to the pixels in the TM image, the exact position of the transect was determined in the field with a GPS. For statistical analyse (see below), we averaged the closest 9 pixels to the field measures to minimize adverse effects of locational errors inherent in the GPS readings. The compiled tree-by-plot matrix was ordinate using a Correspondence Analysis. The first multivariate axis loadings of every plot were used as a measure of tree community composition. TM imagery was analysed with MIPS (Skrdla 1992). Re relationships between field measures and TM radiances were highlighted by correlation analyses. The forest units were compared by means of ANOVAs. All statistical analyses were done with SAS (1989).

RESULTS AND DISCUSSION

We found 57 tree species within the 1571 m2 sampled (mean number of tree species per plot was 7.9, ranging from 4 to 12), a result that once more points out the enormous diversity of this biome (Flenley 1993). The first axis of the Correspondence Analysis performed on the tree matrix reveals that the major source of variation was related to the topographic gradient (correlation between plot loadings and their relative position in the transect was $r=0.90$, P, n=20). The species with the smallest (most negative) loadings for this axis are characteristic of low seasonal swamp forests (Haematoxylon campechianum, Coccoloba spicata), whereas the greatest loadings correspond to the more upland species (Simaruba glauca, Proteum copal). Species with intermediate loadings either occupy intermediate topographic positions (Laethia damnea, Sabal morricona) or are represented throughout the entire transect (Fouleria reticulata). The position in the topographic gradient is also correlated with foliage height ($r=0.77$, P, n=26) and foliage density ($r=0.74$, P, n=26). These patterns have also been described by Rey Benayas & Pope (1995) and by Pope et al. (1994) in adjacent areas of Belize using AIRSAR radar biophysical indices.

Tree community richness and composition are positively related, but this relationship is not statistically significant. This lack of significant correlation may be due to the fact that the extreme vegetation units, both in their topographic position and tree richness, have not been included in the study. The positive relationship between tree richness and the relative position of the forest community along the topographic gradient in the region has been suggested by Bartlett (1936) and Lundell (1937), and our data confirm it. Similar relationships are reported from lowland tropical forests in Costa Rica (Liebeman et al. 1985).
and green leaf biomass or productivity describes by various studies (Scheiner & Rey Benayas 1994, Smith & Huston 1989). At the landscape scale the same relationship was found. Tree community composition is the only variable measured in the field correlated with all bands. Foliage height was correlated with TM3 radiance, but despite of the high correlation between this variable and foliage density \((r=0.74, P<0.0001)\), significant correlations for foliage density and TM radiances were not found, in contrast to the studies by Horber (1986), Spanner (1990) and others.

The comparisons (ANOVAS) among the four forest units resulted in significant differences for tree community composition \((F= 37.05, P<0.0001)\), foliage height \((F= 6.12, P<0.05)\) and all TM bands \((F= 4.37, P<0.02, T M 5: F= 13.0, P<0.0001; T M 7: F= 15.58, P<0.0001)\). Thus, differences in ecological characteristics as measured in the field are represented by differences in TM radiances. Red and middle infrared bands account for more TM variability among the forest units than does the near infrared TM4. This result is consistent with the analysis of sources of TM variability at a landscape scale (Rey Benayas & Pope 1995), since this source was related to middle infrared in the lowlands and near infrared in the uplands, and the transect under study includes more lowland than upland forests.

Overall, various forest characteristics as measured in the field present significant relationships with TM radiance values. These relationships are in general consistent with the relationships established at a landscape scale. The only discrepancy is the lack of significance for the correlations between tree richness and the position in the topographic gradient with TM4 radiance. Foliage density was also little related to TM radiances. The TM sensor has been shown to provide an accurate estimate of various ecological properties at a landscape scale with a high degree of confidence, but the reliability of single pixel estimates are poor (Cook et al. 1989). Our results indicate that the spatial resolution and information provided by the TM sensor can be used to describe ecological characteristics at a plant community level, mostly vegetation composition, in the seasonal tropical forests of the region, and thus extrapolate relationships that may aid land use planning and monitoring.

ACKNOWLEDGEMENTS

We are indebted to Edward Backus, Nick Browkaw, Juan José Castillo and Jose Maria Aguil for their help with the field sampling and comments. Agustin Lobo kindly reviewed a preliminary version of this letter. Funding was provided by Conservation International, Instituto de Cooperación Iberoamericana de Spain and NASA/JPL Shuttle Imaging Radar program.

REFERENCES

