What is an optical spectrometer /spectroradiometer?
Optical spectrometer/spectroradiometer measures light properties in the optical region.

(Optical: controllable by lenses, mirrors, prisms, and fiber optics.)
Why use NIR?
Why use NIR?

- Non-destructive measurements
- Little or no sample prep
- Readings in milliseconds
- Ease of operation
- Accurate and precise
Collecting Reflectance/Transmittance Spectra

The ratio of the reflected energy of the Spectralon panel to the reflected energy of the sample creates a spectrum.

Total energy falling on the sample (Irradiance)

Reflected energy (Radiance)
ASD history and products
Founded in 1990 by Drs. Alexander Goetz and Brian Curtiss to meet demanding portable instrumentation needs for Remote Sensing

- Developed worldwide reputation for portable, robust, high speed spectrometers & spectroradiometers
- Over 3500 units in use in over 70 countries

Alexander Goetz

Brian Curtiss
Goetz and Curtiss early research in portable spectrometry (before ASD)

Dr. Goetz

PFRS 1974

Dr. Curtiss

PIDAS 1984
First ASD product: Personal Spectrometer II
350-1050 nm
1990
LabSpec® [original] Spectroradiometer 350-1050 nm

Winter 1992
FieldSpec® Classic Spectroradiometer
350-2500 nm
or
350-1050 nm

Winter 1992
SeaSpec®
Spectroradiometer
350-1050 nm
Spectrode
525 nm

For photometric titration
FieldSpec Chem Spectrometer
350-2500 nm
FieldSpec HandHeld [original]
325-1075 nm
TerraSpec Examiner/Explorer Spectrometer 350-2500 nm

September 2006
LabSpec® 2500/2600/5000/5100 Spectrometer
350-2500 nm or 350-1050 nm

September 2006
AgriSpec®* Spectrometer
350-2500 nm
RxSpec® * & QualitySpec® 7000
On-line Spectrometers
QualitySpec KB*
Spectrometer
350-2500 nm
RxSpec 700Z Spectrometer 350-2500 nm
FieldSpec 3 Spectroradiometer
350-2500 nm or 350-1050 nm

Fall 2006
HandHeld 2 (325-1075 nm)

Fall 2010
- Reflectance, Transmittance, Radiance, Irradiance
- Battery powered, field portable
- On-board, tilting display for spectrum display
- Local push-button operation
- Internal file storage of up to 2,000 spectra
- Scan over 325 – 1075 nm in 8.5 ms (selectable)
- ASD Proprietary Driftlock™
- Standard 25 Deg Field-of-view
- Targeting: Integral red laser
- Weight: 1.2 kg (2.6 lbs) (w/batteries)
FieldSpec 4
350–2500 nm
January 2012
- Reflectance, Transmittance, Radiance, Irradiance
- Battery powered, field portable
- Complete scan over 350 – 2500 nm in 0.1 seconds
- Built-in ruggedized fiberoptic cable input (1.5 m standard) with 25 Deg Field-of-view
- Wireless WiFi interface 802.11g
- Backpack
- Interface with ASD Probes
- ENVI can import ASD binary files directly
- Weight 5.44 kg (12 lbs)
FS4 Signal-to-Noise Ratio Improvement Relative to the FS3

avg. VNIR performance improvement = 1.1x

avg. SWIR1 performance improvement = 2.3x

avg. SWIR2 performance improvement = 2.5x

Note: For the same measurement period, this plot shows, as a function of wavelength, the signal-to-noise ratio performance improvement of the FieldSpec4 over the FieldSpec3.

○ = NEdL specification wavelengths
LabSpec 4/ 4 i / Bench Spectrometer 350-2500 nm

- Reflectance, Transmittance
- Battery powered, field portable (except benchtop model)
- Complete scan over 350 – 2500 nm in 0.1 seconds
- Wireless WiFi interface 802.11n or Ethernet
- Interface with ASD Probes
 (i model includes an internal broad-spectrum halogen light)
- Weight 5.44 kg (12 lbs)
TerraSpec 4 Spectrometer
350-2500 nm
2013
TerraSpec Halo and QualitySpec® Trek Spectrometers 2013, 2014

- Spectral Reflectance 350 – 2500 nm
- Battery powered, field portable
- Height x Width x Depth: 31 x 10 x 30 cm, (12.3 x 4.0 x 11.7 in)
- Weight with battery 2.5 kg, (5.5 lbs); Weight without battery 2.0 kg, (4.3 lbs)
- On-board GPS, voice audio recorder for sample descriptions.
- Languages English, Spanish, Chinese
- A single fully charged battery outputs for 4 to 6 hours depending on audio
- On board Spectral storage of ~7300 spectra w/o audio, ~300 with audio (recommend syncing after every 1000)
- Manager allows for 10 GB limit for each project.
- Halo only: Library spectra for 130 minerals, mineral prediction and scalar calculation based on reflectance spectra.
Methods of interrogating light as a function of wavelength or frequency

- Prism
- Transmissive diffraction grating
- Reflective diffraction grating (ASD is this type)
- Interferometer
- Filter
- Sample
- Detector
- Film
Instrument approaches

Post-dispersive (ASD is this type)

White light reflected off of or transmitted through sample, then dispersed.

Pre-dispersive

White light is dispersed, then reflected off of or transmitted through sample.
Arrays and scanners

Fixed VNIR Grating

Undispersed 'White Light'

Dispersed Light

Fixed Array

Scanning SWIR1 Grating

Undispersed 'White Light'

Dispersed Light

Fixed SWIR1 Detector
Water band noise
(This is right!)

ASD
FieldSpec FR
Vegetation
Reflectance
Solar
Illumination
Normal
Humidity

FieldSpec FR Reflectance of Vegetation
Wavelength (nm)

ASD FieldSpec FR
Vegetation Reflectance
Solar Illumination
Very Dry Conditions

ARTIFICIAL ILLUMINATION

Reflectance
Wavelength (nm)

Reflectance
Wavelength (nm)
Measurements under solar illumination
Measurements under solar illumination

Factors to consider under solar illumination:

- Solar Angle
- Path Radiance
- Sky Light
- Direct Sun Light
- Reflected Light From Target
- Scatter From Surroundings
- Clouds
- Shadows
- Target (maintain same angle to sun)
- Sensor
- Wind
Are you tired of waiting for that “perfect day” to collect your field spectra?

Do you want to collect more accurate reflectance spectra?
FieldSpec® Dual Software
What is FieldSpec Dual?

ASD's FieldSpec Dual software works with your existing FieldSpec systems to synchronize collection of white reference and target measurements:

- collect spectra under less than perfect atmospheric conditions
- collect more accurate spectra
The Problem

- Rapidly changing atmospheric conditions pose one of the greatest obstacles to the collection of accurate field-collected reflectance spectra using solar illumination
The Problem

- Rapidly changing atmospheric conditions pose one of the greatest obstacles to the collection of accurate field-collected reflectance spectra using solar illumination.

- Field measurements collected in illumination conditions that are inconsistent with the associated reference measurement cannot be reproduced or correlated to imagery with any degree of certainty.
The Problem

- Rapidly changing atmospheric conditions pose one of the greatest obstacles to the collection of accurate field-collected reflectance spectra using solar illumination.

- Field measurements collected in illumination conditions that are inconsistent with the associated reference measurement cannot be reproduced or correlated to imagery with any degree of certainty.

- Traditionally field work is limited to days with favorable atmospheric conditions, often incurring additional and often unbudgeted project costs waiting for good weather.
Example — Conditions

- Sunlight intensity varied by ~30% and water vapor absorption by ~45% over the 15 minute sample measurement period.
- Without FieldSpec Dual, it would not be possible to collect accurate field reflectance spectra under these conditions.

Variation in overall brightness (an average of the 450-800 nm range) and water vapor absorption (an average in the vicinity of the 1200 nm water vapor absorption feature).
Example — Instruments Used

The following FieldSpec instruments were used for the test:

- FieldSpec 4 Ser. No. 18147 was used as the Field Based Unit (FBU)
- FieldSpec 4 Ser. No. 18343 was used as the Mobile Unit (MU)
Example — Instrument Intercalibration

Using the FieldSpec Dual tripod mount to:

- Intercalibrate wavelength scale using the wavelength intercalibration reference puck
- Intercalibrate the reflectance scale using the white reference panel
After performing the intercalibrations, the MU unit was used to view samples while the FBU remained viewing the Spectralon white reference panel. Reflectance spectra for each of the measured samples were computed as follows:

\[
\text{Refl} = \left[\frac{\text{DN-MU}_{\text{sample}, t=i}}{\text{DN-FBU}_{\text{wr}, t=i}} \right] \times \left[\frac{\text{DN-FBU}_{\text{wr}, t=0}}{\text{DN-MU}_{\text{wr}, t=0}} \right]
\]
FieldSpec Dual allows you to measure accurate field reflectance spectra under variable atmospheric conditions.
The Value To Research

- By removing operator subjectivity and white reference time lags, the FieldSpec Dual system eliminates the most common source of error and inconsistencies associated with spectral measurements using solar illumination.
The Value To Research

- By removing operator subjectivity and white reference time lags, the FieldSpec Dual system eliminates the most common source of error and inconsistencies associated with spectral measurements using solar illumination.
- Field scientists can now calibrate and validate sensors and develop field-collected full-range spectral libraries with total confidence.
The Value To Research

- By removing operator subjectivity and white reference time lags, the FieldSpec Dual system eliminates the most common source of error and inconsistencies associated with spectral measurements using solar illumination.
- Field scientists can now calibrate and validate sensors and develop field-collected full-range spectral libraries with total confidence.
- Stop wasting time and $ waiting for that perfectly clear day. By providing near-simultaneous white reference/sample target measurements the FieldSpec Dual system effectively eliminates/neutralizes the need to wait for optimal weather conditions to carry out field campaigns.
The Value To Research

- By removing operator subjectivity and white reference time lags, the FieldSpec Dual system eliminates the most common source of error and inconsistencies associated with spectral measurements using solar illumination.
- Field scientists can now calibrate and validate sensors and develop field-collected full-range spectral libraries with total confidence.
- Stop wasting time and $ waiting for that perfectly clear day. By providing near-simultaneous white reference/sample target measurements the FieldSpec Dual system effectively eliminates/neutralizes the need to wait for optimal weather conditions to carry out field campaigns.
- Dust off that old FieldSpec 3! The new FieldSpec Dual collection software system is compatible across the FieldSpec 3 and FieldSpec 4 product lines.
Product History

- 1996 – ASD released the FieldSpec VNIR-Dual – the first commercial dual spectroradiometer product to enable simultaneous upwelling and down-welling measurements:

 “Based on ASD’s popular **FieldSpec VNIR** spectroradiometer, the two spectrometers of the FieldSpec VNIR-Dual provide simultaneous measurements of two components of the ambient light field. Because of this capability, the FieldSpec Dual UV/VNIR is rapidly becoming a standard in the oceanographic research community for the measurement of the above-water radiances necessary for the calculation of remote sensing reflectance.”

- 2001 — ASD announces the FieldSpec Pro Dual VNIR

- To date, over 100 peer reviewed papers have been published that provide real world problems/solutions and use cases

- The 2015 FieldSpec Dual collection software is updated to work with ASD’s FieldSpec line of field portable spectroradiometers
Eligible Products

- **FieldSpec 3’s serial numbers**
 - 16139, 16146, 16167, 16168, 16176
 - 16178 and all subsequent serial numbers
- **All FieldSpec 4’s**
- **Technical requirements**
 - Instruments are accurately calibrated
 - As long as the instruments are of the same resolution, FieldSpec 3’s and FieldSpec 4’s can be paired
Applications
Field portable for ground truthing spectral imaging sensors

Field portable for getting to difficult access areas and targets.

Field portable to meet time limits. Need to move quickly and collect a lot of spectra within time limits; minimize changing illumination, and physical changes due to temperature and humidity changes, etc.

Field portable for data quality. Minimize reflectance from mounting method (large vehicles would produce significant reflectance noise).

Field portable for platform flexibility.
Field portable for fast in situ measurements in difficult situations
Field portable for fast in situ measurements in time sensitive exploration & production processes
Field portable for ease of transportation around the world
Applications...

Rapid classification

Classifying many different materials in-situ in different locations. Full spectral range and many wavelength features are necessary to accommodate small differences in same material spectra and to discriminate between similar spectral features in different materials.
Applications…

Post dispersive non-destructive in-situ

Live sample, property of interest is lost if detached.

Large live sample studies.

Large samples, small sampling is not representative or not allowed.

Solar illumination.

Sensitive sample. Sample cannot be removed or damaged.
Applications…

Spectroradiometry (must be post dispersive).

Measurements of large/fixed illumination devices or areas. Cannot move target, must move instrument (portable spectroradiometer).

Solar studies.
Applications... Raw material quality control

WITHOUT ASD LABSPEC 4

RAW MATERIALS VENDER
↓
RECEIVE (-$)
↓
QUARANTINE (-$)
↓
SUBSET TO LAB (-$)
↓
RETURN FROM LAB
↓
PASS
↓
FAIL ⇒ (-$$$$$$)
↓
MIX
↓
EA BATCH TO LAB (-$$$$$$$$)
↓
RETURN FROM LAB
↓
PASS
↓
FAIL ⇒ (-$$$$$$$$$)
↓
STOCK ⇒ SELL

WITH ASD LABSPEC 4 (and goLab)

RAW MATERIALS VENDER
↓
~100% INSPECT ⇒ FAIL
↓
PASS
↓
RECEIVE
↓
MIX
↓
FINAL INSPECT EA BATCH
↓
PASS
↓
FAIL ⇒ (-$)
↓
STOCK ⇒ +++++SELL$$$$$$++
Some reference papers on applications

USGS Spectroscopy Lab Surface Reflectance Calibration of Terrestrial Imaging Spectroscopy Data: a Tutorial Using AVIRIS, by Roger N. Clark, Gregg A. Swayze, and others
http://speclab.cr.usgs.gov/PAPERS.calibration.tutorial/

Mineral Mapping Using Spectroscopy: From Field Measurements to Airborne and Satellite-Based Imaging Spectrometry, by Fred A. Kruse
http://www.asdi.com/getmedia/ad51d09a-42b4-4c56-b1b7-afb5b6d52bcc/Mineral-Mapping-Using-Spectroscopy.pdf.aspx

Imaging Spectrometer Data Analysis – A Tutorial, by Fred A. Kruse

http://www.asdi.com/getmedia/1e2c6c6c-e043-4b01-b4c9-2e3309e05065/REFLECTANCE-SPECTROSCOPY-APPLIED-TO-EXPLORATION.pdf.aspx

Unveiling Mineralogical Information in Ore Deposits: The Use of reflectance Spectroscopy for Mineral Exploration in South America, by Alvaro P. Cróst

TerraSpec Halo for the Mine Geologist, by Stacey Leichliter

Quantitative prediction of material properties using reflectance spectroscopy: A multivariate chemometrics-based approach, by Daniel A. Shiley

Field Characterization of White Micas Using the TerraSpec Halo, by Brian Curtiss
Curtis_Field_Characterization_of_White_Micas_Using_the_TerraSpec_Halo

Estimation and Extrapolation of Soil Properties in the Siberian Tundra, using Field Spectroscopy
Some instrument details
ASD unique features for optimizing signal stability

Thermo-Electric (TE) cooling on the InGaAs SWIR detectors: For minimizing large changes in dark drift offset.

ASD Proprietary Driftlock™ (hardware and software system): For continuous update and subtraction of systematic dark offset. Without Driftlock small changes in dark offset would affect the lowest signal points of the detector.
ASD NIST traceable radiometric calibration facility

ASD NIST traceable radiometric calibration facility used for calibrating the ASD FieldSpec has been compared to those at both NASA-Ames Research Center and Los Alamos National Laboratory and has been found to be within 1% of both facilities. Radiometric calibrations require a thorough understanding of energy geometries, irradiance standards, and equipment maintenance. Independent verification by world-wide recognized facilities ensures radiometric accuracy.

Fig. 3. (a) Radiance measured from the LANL sphere. Squares represent the NIST calibration, triangles the Labsphere calibration and the continuous curve the ASD FieldSpec. (b) Ratios of the Labsphere and NIST calibrations against the ASD FieldSpec measurement.
ASD wide field-of-view

Wider conical field-of-view (FOV) than any other similar product (25 deg full conical angle on the bare input):

Allows for very large spot sizes necessary for measurement of foliar canopies, geological faces, ground features, backgrounds, imager pixel sizes.

Conical FOV also allows for very close small spot measurements down to 1/8 inch and contact measurements.
ASD variety of accessories

ASD proprietary contact probes, fiberoptic jumper cables, in-air and underwater foreoptics, and integrating sphere interface with FieldSpec 4 and HandHeld 2. Allows for optimal flexibility and convenience in measurement approaches and field portable measurements.
ASD proprietary Fiber Checker

The ASD **FieldSpec 4** (350 - 2500 nm) includes ASD proprietary ‘fiber checker’ hardware and software for checking the performance of the fiberoptic cable. Routine checking of fiberoptics integrity ensures accurate data collection.
ASD on-screen instrument diagnostics.
FieldSpec 4 Wi-Fi communications

FieldSpec 4 10/100Base T Ethernet and 802.11g Wireless-Wi Fi interface interface: For interface with a variety of the most recent note book computers and for control over capable networks; wireless capability is necessary for field control at a distance, reducing cable clutter, and ease of use.