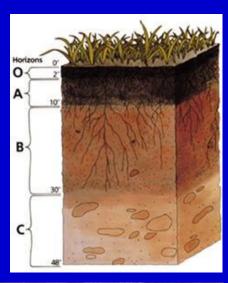
Spectral measurements of soils: Protocols, metadata and spectral libraries

Madrid, Instituto Nacional de Técnica Aeroespacial (INTA)

Jueves 7 de marzo 2019

Dr. Thomas Schmid

ihomas schmid@ciemat.es Www.cienialaes



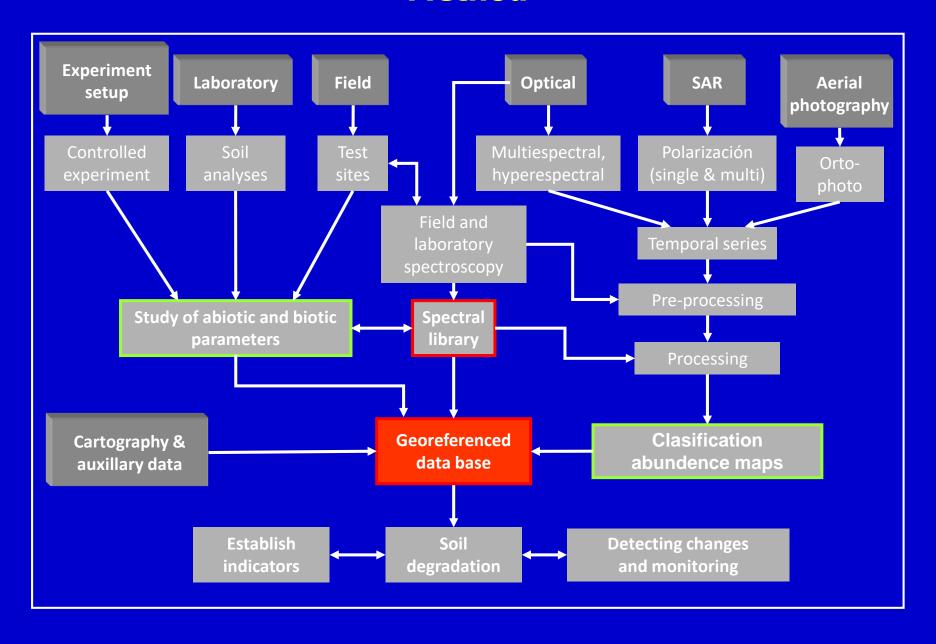
Content

Soil

Soil is a natural body that includes solids (minerals and organic matter), liquids, and gases that occur on the surface of the earth, which occupies a space, and which is characterized by one or both of the following: horizons or layers that are distinguished from the initial material as a result of additions, losses, transfers, and transformations of energy and matter or for the ability to support plants rooted in a natural environment.(USDA and NRCS, 2006).

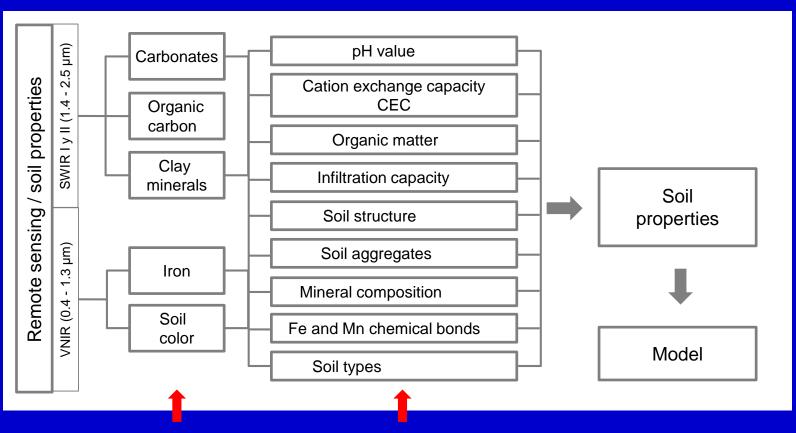
What affects soils in a European context

- Demographic pressure leads to expanding urban areas
- Population migration to urban centers, rural land abandonment
- Over exploitation of natural resources
- Highly fragmented landscape (high spatial variability)
- Huge variety of ecosystems, different functioning
- Ecosystems are often highly vulnerable
- Complex land management patterns
- Contaminatión: mining minerals, agriculture, industry, urban centres
- Influence of climate change and economic situation


Needs

- Detailed characterization
- Identifying and monitoring trends
- Determine threshold values
- Working at different scales
- Sustainable solutions

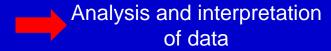
Integrated approach


- Terrestrial compartments
- Spatial & spectral resolution
- Multi & temporal scale
- Time series
- Multi-sensor

Method

Soil properties that can be determined with remote sensors


Each material has its characteristic disturbance (spectral response)



Primary Properties; (Directly linked and with a theoretical basis for prediction from spectroscopy). Secondary properties (derived indirectly using one or more of the primary properties).

Protocolo

- 1. Objective of work
- 2. Sampling strategy
- 3. Location and conditions
- 4. Sensors and instruments
- 5. Standardization

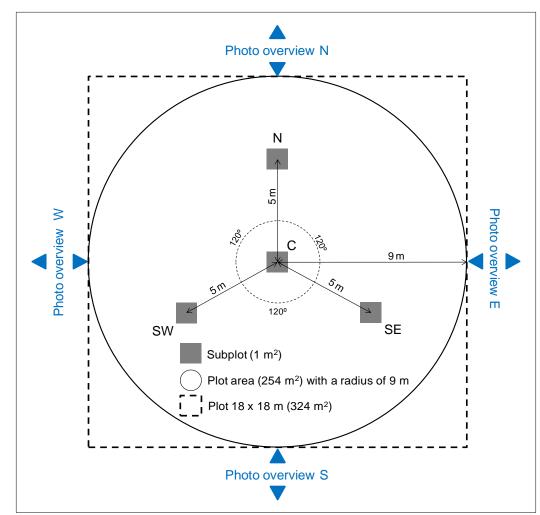
Date*	
Campaign*	
Team*	
Site*	Name*:
GPS coordinates	E N, waypoint:
Target details	Name*: Base file name*: Type: Condition:
Photos	File names:
Cloudcover	0 (clearsky)
Geometry	standard (0°,0°)' or sensorzenith:° azimuth:° Distance (sensor- sample):om
Begin / End	Start time: End time:
Notes	

						ANEL DE						Hoja	
ZONA					F	REFEREN			NACIÓN:				
FECE						PHCA:		5°	\Box	10°	SI	N	
	ONA:				П	IBKA OP	TICA:	1		2	.5		
NSI	RUME	NTO:				MODO:			Ray	W		White	Ref
HORA	OPT	DC	WR	ROOT	Floha			PY	RANO	CIELO	FOTO	Comentarios	
									Т				
									Т				
						+							
						1			\vdash				
									Н				
						+							
						+			\vdash				
						+			\vdash				
						+			\vdash				
						+			\vdash				
						+			\vdash		\vdash		
						+			\vdash				
						+			\vdash				
						+			_		\vdash		
						+			\vdash				
		\vdash				1							

Códigos cielo: [0] cielo claro; [1] niebla; [2] cimos finos - sin bloquear el sol; [3] cimos finos - bloqueando el sol; [4] cúmulos esparcidos - sin bloquear el sol; [5] cúmulos por todo el cielo - sin bloquear el sol; [6] cúmulos - bloqueando el sol; [7] cobertura completa de cúmulos; [8] Estratos - sin bloquear el sol; [9] llovizna.

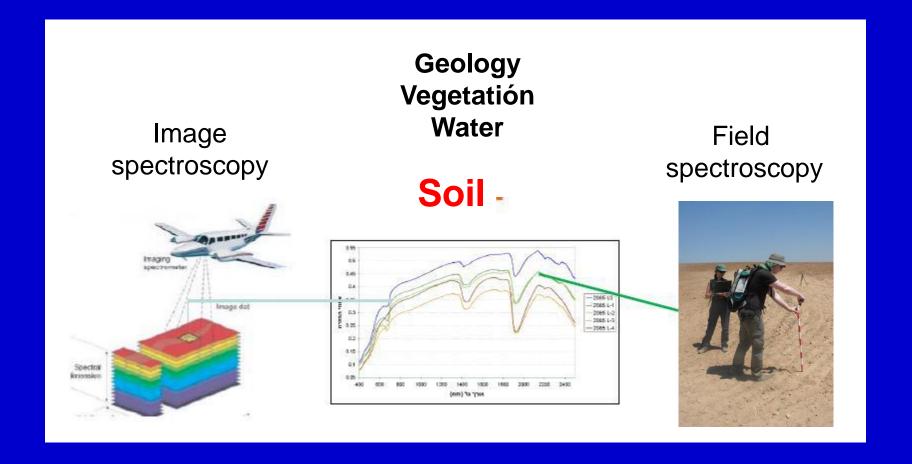
Field spectroradiometry — sample strategy

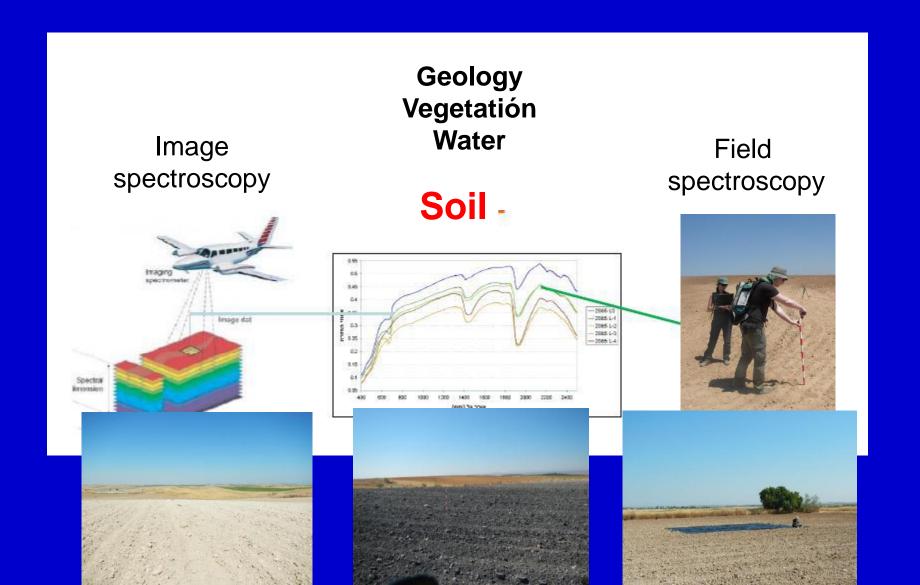
ASD - Protocolo CIEMAT



Field spectroradiometry - sample strategy

ASD - Protocolo CIEMAT



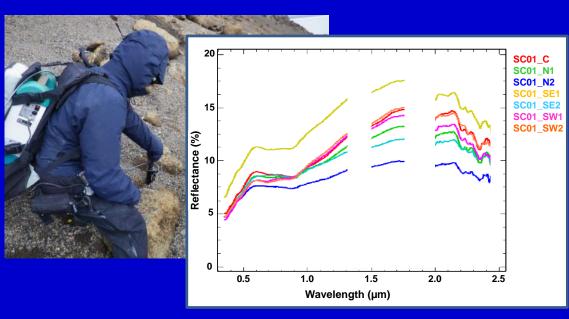


Source: Schmid et al., 2016. Characterization of Soil Erosion Indicators Using Hyperspectral Data From a Mediterranean Rainfed Cultivated Region. IEEE JSTARS, Vol. 9/2, 845 - 860.

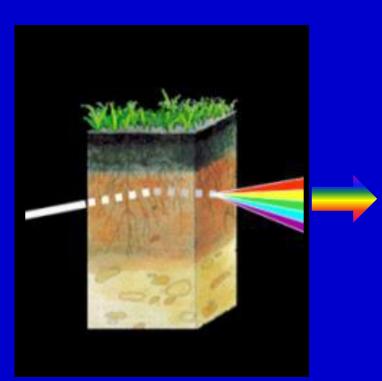
Strong link between field and image spectroscopy

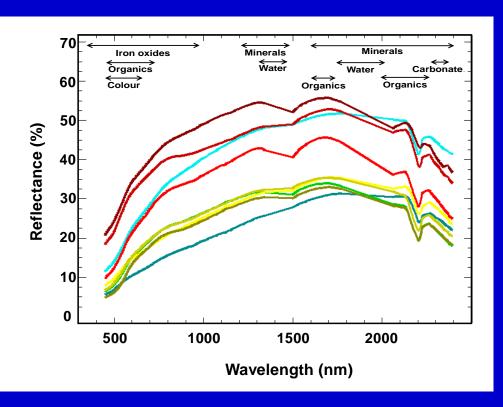
Strong link between field and image spectroscopy

In the field: each location, adapted protocol



In the field: each location, adapted protocol





Muestra	KGI003C
Tipo de muestra	Bare soil
Número de muestras	7
Lugar	Fildes Peninsula, sur de la Base Escudero
Fecha de adquisición	22/12/2012
Eastings (UTM WG\$84)	397554
Northings (UTM WGS84)	3101165
Altitud (msnm)	45
Pendiente (%)	2-8
Geomorfología	Volcanic deposits, andesite
Vegetación	Escaso musgo negro y Usnea
Cobertura (%)	5
Observaciones	Grava angular, escasos bloques
pH (1:2.5)	6.46
CE (1:5) (m S m ⁻¹)	61
CaCO₃(%)	0.0
M.O. (%)	0.2
Ca (cmoles+ kg ⁻¹)	14.7
Mg (cmoles+ kg ⁻¹)	26.5
K (cmoles+ kg ⁻¹)	1.2
Na (cmoles+ kg ⁻¹)	2.2
CEC (cmoles+ kg ⁻¹)	51.7
V (%)	86
<2 mm fracción	73
> 2 mm fracción	27
Arcilla (%)	14
Limo (%)%	17
Arena (%)%	69
Textura	Franco arenosa

Spectroscopy of a soil profile

Form

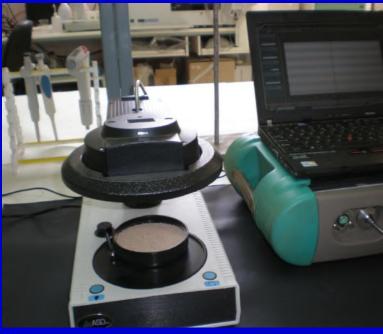
Identification

Position

Depth

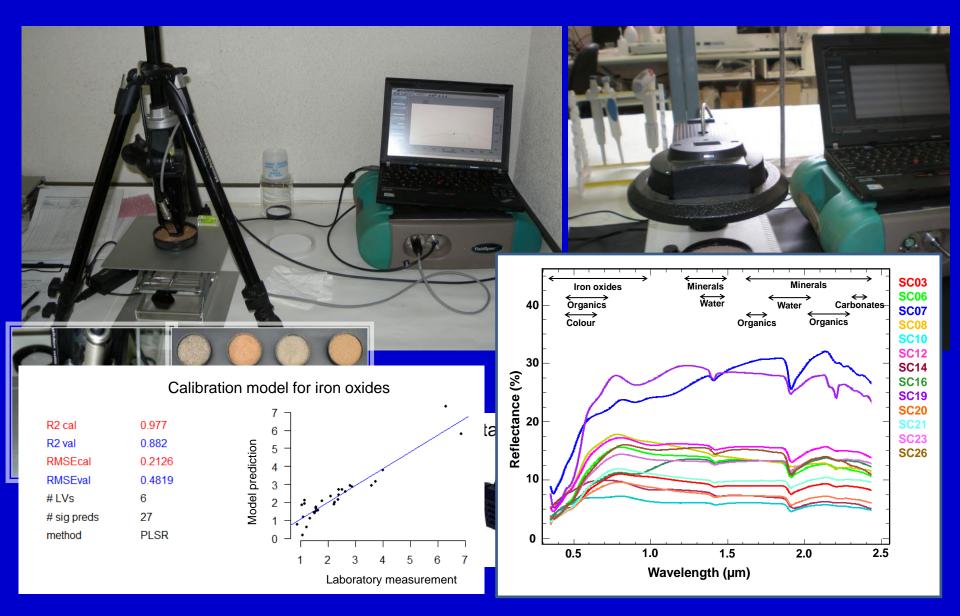
Quantification

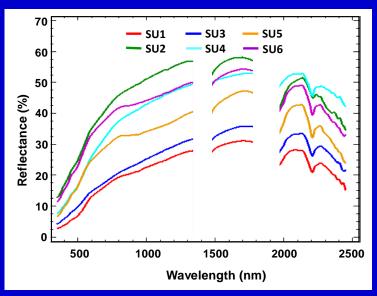
Related field measurements



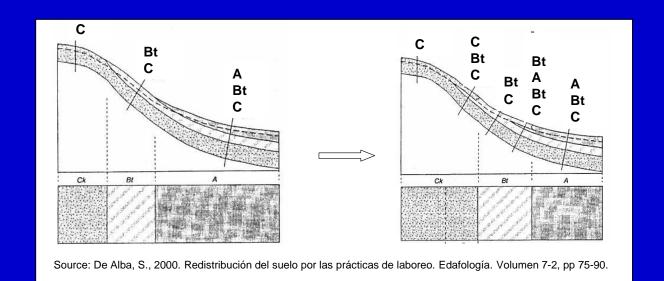
Laboratory spectra

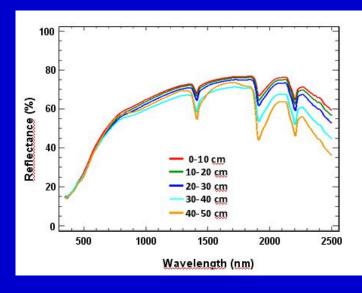
ASD - Protocolo CIEMAT




Laboratory spectra

ASD - Protocolo CIEMAT


Soil surface covers



SOIL PARAMETERS		SANTA ÚRSULA AREA PLOTS (SU)										
SOIL PARA	SOIL FARAMETERS			SU3	SU4	SU5	SU6					
pH (H ₂ Q, 1	7.80	8.22	7.80	5.24	8.46	8.28						
Electrical Co (1:5; μ§	~~~~~~	152.6	173.5	145.4	100.6	186.5	192.1					
Organic (% w	***********	0.8	1.1	0.5	0.5	0.5	1.0					
Calcium carbonate (CaCO ₃ % w/w)		1,0	33,3	0,0	0,0	5,4	26,0					
*******	Iron oxides (Fe ₂ O ₃ % w/w)		0.08	0.17	0.17	0.22	0.25					
	Quartz	48	21	50	52	24	14					
	K-Feldspars	6	9	16	29	7	6					
Mineralogy (%, semiquantitative)	Plagioclase	6	15	8	12	9	6					
	Phyllosilicates	36	13	27	7	54	33					
	Calcite	5	42	0	0	7	40					
***************************************	Coarse fragments (>2mm fraction; %)		36.2	14.8	1.7	1.6	3.3					
	Clay (<0,002 mm)	32.8	20.3	21.4	7.8	27.8	37.8					
Texture (<2mm fraction; %)	Silt (0,002-0,05 mm)	18.7	23.7	10.1	14.2	38.7	26.2					
	Sand (0,05-2 mm)	48.5	56.0	68.5	78.0	33.5	36.0					
Munsell Soil	Hue	7.5XR	10XR	10XR	10XR	10XR	10XR					
Color	<u>Value</u>	5	7.5	5	7.5	6.5	7					
(dry)	Chroma	3	2	2.5	3	3	2.5					

Characterization of soil profiles

	PARAMETERS		TEST PLOT P02										
	PARAIVIETERS	UNITS	0-10 cm	10-20 cm	20-30 cm	30-40 cm	40-50 cm						
	soil moisture	% w/w	1.0	3.3	4.1	3.6	4.2						
	bulk density	g*cm ⁻³	1.6	1.5	1.8	1.7	1.8						
AL	sand	%	86	86	83	81	75						
PHYSICAL	silt	%	9	3	6	3	9						
PH	clay	%	5	11	11	16	16						
	colour (dry)	MUNSELL	10YR 7/3	10YR 7.5/4	10YR 7/3.5	10YR 7/3.5	2.5Y 7/3						
	colour (moist)	MUNSELL	10YR 4/3.5	10YR 4.5/4	10YR 5/4	10YR 5/4	10YR 4.5/4						
	pН		5.19	5.30	5.36	6.00	6.12						
_	electrical conductivity	μs*cm ⁻¹	29.2	23.7	23.5	14.3	17.8						
CHEMICAL	organic matter	% w/w	0.6	0.3	0.4	0.3	0.4						
ΙEΜ	calcium carbonate	%w/w	0.0	0.0	0.0	0.0	0.0						
Ċ	iron oxides (as Fe ₂ O ₃)	% w/w	1.3	1.3	1.3	1.8	2.3						
	cation exchange capacity	cmol ⁺ *kg ⁻¹	2.7	2.9	3.3	4.3	10.3						

Metadata

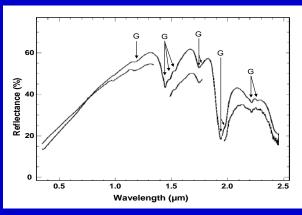
- "Metadata is defined as structured information about an information resource of any type or format" (P. Caplan).
- According to Ukoln, "metadata is structured data about digital (and non-digital) resources that can be used to help in a wide range of operations. For example, in the description and location of resources, in the management of information resources, including the management of intellectual property rights and in their long-term preservation".
- (http://www.ukoln.ac.uk/metadata)

Why are metadata useful?

- To locate resources
- To describe resources
- To control resources
- To identify versions
- To preserve the information

Metadata for spectroradiometry

Metadata	Variables
Location of the point of interest	Latitude and longitude Altitude above sea level
Site description	Class of soil cover Topography Geomorphology
Time of measurement	Coordinated Universal Time (UTC)
Sky conditions	Type of clouds Extension of the cloud cover
Meteorological data	Temperature of air Relative humidity Atmospheric pressure
Instrument	Model and serial number Last calibration Angular field of view
Method of measurement	Type of reference panel and serial number Date of calibration
Field technique	 Viewing geometry Method to hold the sensor (optical fiber)
Type of measurement	Radiance, reflectance



Metadata for soils

Descripción de	parcela:					Foto:							
Autores:													
Fecha observa	ción:												
Localización:													
Municipio:													
Hoja MN:													
Topografía circ	undante:												
Material origina	al:					Aflora	ami	enta:					
Uso de terreno	:												
Vegetación	tipo:												
	especies:												
	cubierta:												
					_								
Muestra:	I					Foto:	_			1		_	
Coordenadas:	Latitude I	N:		Lo	ngit	tude E	=:			Altit	tude (n	1):	
Posición fisiogr				_		_	_					_	
Clase de pendi			0-2	\perp	_ 2	-6		6-13	13-		25-5	-	>55
Forma de pend			conca	wa	Ц,	recta			vexa	ate	rrazada	ì	compleja
Microtopografia	a:					Dren:	aje.	:					
Profundidad:													
Color	seco:							númed					
Humedad:	mojado	húm	nedo	se	со	ma	ıncı	has húi	medo	\perp	manch	าลร	seco
Fragmentos de rocas	ninguno	mı	цу росоя	3	рс	cos	cos frecuentes			muchos		al	oundante
Observaciones	:												
Muestra:					$\overline{}$	Foto:						_	
Coordenadas:	Latitude 1	d.		Lo		tude E				ΔItif	tude (m	2).	
Posición fisiogi		٧.			ngn	uue L				Aim	idde (ii	7.	
Clase de pendi			0-2	\neg	- 7	-6		6-13	13-	25	25-5	5	>55
Forma de pend			conca		Ť	recta	<u> </u>		vexa		rrazada	_	compleja
Microtopografia			COIICA	va	╁	Dren:			чела	Tarei	IIazaud	1	compleja
Profundidad:						D1011	90					_	
Color	seco:						Ti	númed	u.			_	
Humedad:		húm	nedo	se	co	Tma		has húi		Т	manch	189	seco
Fragmentos	ninguno	T	лу росоя	Ť		cos	\neg	frecue			chos	T	oundante:
de rocas	_		2, pocos	\perp	ρv		\perp				0.100		Janaan ito.
Observaciones	:												

Spectral library – Georeferenced data base

Mineral	Absorption positions (µm) –(Crowley 1991)	P.R*
Calcite	2.335	48
Halite	1.432, 1.936	61
Hexahydrite	0.976, 1.232, 1.436 , 1.462, 1.572 , 1.932 , 1.960	6
Pentahydrite	0.984, 1.188, 1.224, 1.458, 1.556, 1.932 , 1.976	6
Starkeyite	0.972, 1.202 , 1.436 , 1.460, 1.548, 1.596 , 1.938 , 2.412	9
Gypsum	0.992, 1.196 , 1.440 , 1.484, 1.530, 1.740 , 1.768, 1.936 , 1.964	18
* P.R. Percer	ntage reflectance at 2.5 μm.	

Registration and location

Sample id: P8LS096T26E_Salt crust (H44)

Location: La Lagunilla Municipality: Villafranca de los Caballeros

UTM-Easting: 471423 UTM-Northing: 4365514 Elevation (m): 638

Abiotic and biotic characteristics

Geomorphic environment: Lacustrine

Landscape: Lake plain

Topography: Flat

Slope class (%): 0 - 0.1

Landform: Lake bed

Microtropography: Even

Slope form: Hillslope position:

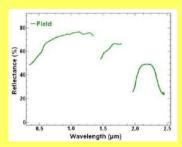
Land use: Not used and not managed Anthropogenic influence: No influence Surface cover feature: Salt crust

Parent material: Marl and gypsum sediments

Soil properties

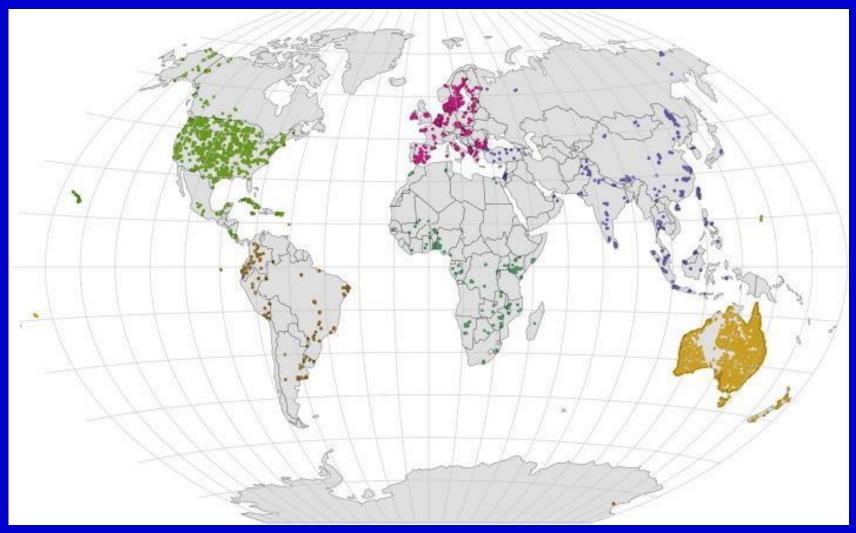
Carbonates (%): 7.2 pH (1:25 H2O): 8.6 Fe2O3 (%): 0.4 Organic matter (%): 2.4

Electric conductivity (dSm-1): 37.8


Munsell colour: Dry 10YR8/2 (very pale brown) Wet 10YR6/2 (light brownish grey)

Mineralogical composition*

Bloedite: Halite: +
Hexahydrite: Tr. Pentahidrite: +
Starkeyite: + Tridimite:
Gypsum: ++ Calcite: +
Dolomite: Quartz: Tr.
K-feldespar: + Na-feldespar:


Phyllosilicates: + (illite)

*(Tr. - trace; + common; ++ abundant; +++ very abundant)

Spectral libraries (global)

Source: Viscarra Rossel, R.A., et al., 2016. A global spectral library to characterize the world's soil. Earth-Science Reviews, Vol. 155, 198-230.

Available spectral libraries

Soil Spectra Library containing visible near infrared spectra of 785 soil profiles (4,438 samples) http://www.worldagroforestry.org/sd/landhealth/soil-plant-spectral-diagnostics-laboratory/soil-spectra-library

Brazilian Soil Spectral Library https://bibliotecaespectral.wixsite.com/english

USGS Spectral Library by USGS. Reference library of mainly laboratory based samples. https://speclab.cr.usgs.gov/spectral-lib.html

ASTER Spectral Library - Version 2.0 by JPL. ECOSTRESS Spectral Library - Version 1.0 . https://speclib.jpl.nasa.gov/

SPECCHIO a spectral information system for reference spectra and spectral campaign data. http://www.specchio.ch

SPECTATION by GFZ. Windows based spectral database solution, mainly vegetation. http://www-app2.gfz-potsdam.de/spectation/?file=main

EcoSIS Spectral Library, an online database containing 71,259 spectra. https://ecosis.org/

Mineral spectroscopy server (Cal Tech) free mineral Raman, UV/VIS-near-infrared, mid-IR spectra. http://minerals.gps.caltech.edu/

"A nation that destroys its soils, destroys itself"
President Franklin D. Roosevelt, 1937

