

fiducial reference measurements for satellite vegetation products

Fiducial Reference Measurements of land surface parameters for validation of Sentinel 2 y Sentinel 3, FRM4VEG project and CEOS LPV super-sites selection

Vicente García-Santos, Fernando Camacho and Beatriz Fuster Col. Joanne Nightingale, Jadu Dash, Javier Gorroño, Niall Origo, James Ryder, Luke Brown

The Truth about In situ Data

 Most in situ methods do not (can not) measure the target quantity directly

FRM Projects: Fiducial Reference Measurements

- Concept created out of the S3 mission team for SST
- Direct translation of QA4EO to in situ / reference data
- In situ measurements / campaigns specifically designed for satellite data/product validation:
 - That are rigorous on traceability and uncertainty characterisation
 - May provide a means to bridge potential data gaps
 - Facilitate interoperability between sensors
 - Anchor / establish FDRs
- Largely funded by ESA, but are being adopted more widely by other space agencies in the context of CEOS

- Have documented evidence of metrological traceability to SI (or appropriate international community standard) including full uncertainty budget (instrumentation and usage), which must be at a level commensurate with the application
- Consider all spatial/temporal/scaling issues
- Be <u>independent</u> of any satellite geophysical retrieval process
- Provide long-term sustainable mission validation information
- Be carried out following community agreed good practice protocols (some which still need to be written!)

Current FRM projects

fiducial reference temperature measurements

FIDUCIAL REFERENCE MEASUREMENTS FOR ALTIMETRY

fiducial reference measurements for satellite ocean colour

fiducial reference measurements for vegetation

https://frm4veg.org/

fiducial reference measurements for vegetation

Support the initial validation of Copernicus vegetationrelated products (fAPAR, LAI, CCC) from:

- Sentinel-3 (L2)
- Sentinel-2 (L2)

As well as proposing the methodologies for the definition of the required Fiducial Reference Measurements (FRM) for vegetated field sites

https://frm4veg.org/

Phasing

fiducial reference measurements for vegetation

Phase 1 (2018 -19)

- Produce FRM protocols and procedures documentation
- Produce FRM validation methodology documentation (uncertainty budgets)
- Pre- and post- field sensor calibrations
- Conduct field campaigns (Barrax, Wytham Woods)

Phase 2 (2019-20)

- Repeat phase 1 activities at 2 new field sites
- Define requirements for and set up a FRM supersite

Barrax sampling

Las Tiesas farm A –Alfalfa P –Pappaver B- Barley G- Garlic R- Rapeseed W-Wheat BS- Bare soil

• Dates: 1st -8th June 2018 + 2nd August 2018

52 ESU were characterized with DHP, LiCor-2200, SPAD

7 crop types + barley (senescent)
+ bare soil characterized

Wytham sampling

• Dates: **3rd – 12th July** 2018 + **23rd August** 2018

No. PAR sensors used per ESU

•	42 ESUs characterized
---	-----------------------

• 9 ESUs coincident with PAR sensors

Sampling the ESU

≻A systematic sampling scheme was followed (VALERI).

The size of the area sampled was around 20 m x 20 m.

≻The sampling includes 13-15 individual measurements.

The GPS coordinates of the centre of the ESU (point 1) taken.

>DHP – 15 photos

≻LAI-2200 – 3 up x 5 down

- SPAD 18 samples x 13 locations (3 leaves – top, middle and bottom 6 replicates per leaf)
- ➢ All ESUs were flagged,

FAPAR, LAI and Chl were taken over same locations !

>In forest, overstory and understory characterized

Southampton

cesa

FAPAR uncertainty

Source	Symbol	Туре	Description	Devices
Calibration	u(c)	Systematic	Uncertainty in the	Quantum sensors
			calibration coefficient	Ceptometers
Spectral	$u(\lambda)$	Mostly	Error in the spectral	Quantum sensors
		systematic	range/response not	Ceptometers
			equating to true PAR	
			response	
Radiometric	$u(r_r)$	Systematic	Resolution of data logger	Quantum sensors
resolution			to record voltage	Ceptometers
Angular	$u(m_{\theta}),$	Systematic	May refer to cosine	DHP
response	$u(m_{\varphi})$		response, lens	Quantum sensors
			characterisation, etc.	Ceptometers
	24(A)	Usually	Zenith and azimuth	DHP
Levelling	u(0),	random	errors	Quantum sensors
	α(φ)	Tanaom	611013	Ceptometers
Exposure	u(l)	Random	Uncertainty due to	DHP
settings			exposure settings in the	
			camera	
Image	u(class)	Random	Uncertainty due to	DHP
classification			operator decision on the	
			soils/veg classification	
			with CAN-EYE software.	
Sampling	u(samp)	Random	Uncertainty due to	DHP
			spatial heterogeneity and	Quantum sensors
			the sampling performed	Ceptometers
			(i.e., deviation in the gap	
			fraction value per	
			measurement)	
			,	
Sky	u(sky)	Random	Cloud and sky variations	DHP
uniformity			can affect the	Quantum sensors
			measurements over the	Ceptometers
			same ESU.	
Definition	u(def)	Systematic	Uncertainty due to the	DHP
(assumptions)			black-leaves assumption	Quantum sensors
			(FIPAR vs FAPAR)	Ceptometers

Type 1 Manufacture's and calibration

Type 2 Set up and measurements

Levelling

Origo et al. (2017)

"The results show that the average difference between the two procedures is < 2% for effective plant area index and < 1% for gap fraction"

 $\sigma_{lev} = 1\%$ with hand-levelling techniques for FAPAR (2% for PAI).

DHP FAPAR uncertainty

Sampling

Propagation of uncertainties due to within-ESU variability of gap fraction, related to spatial heterogeneity

 σ_{sam} = Standard Error from mean gap fractions of all images at the θ_s =10:30 UTC.

Classification

Experiments conducted in both campaigns. 5 ESUs/site were classified by three different operators

σ_{clas} = Standard Error of FAPAR 10:30
~ 4 % (no systematic trend detected)

DHP FAPAR uncertainty

DHP FAPAR uncertainty

Understory

- Uncertainty values typically within 0.01-0.15 (average 0.07).

And other sources for upscaling: eg, timing between ground measurements and satellite acquisition can change the status of the vegetation (mainly in crops)

CCC estimation overview

Chlorophyll meter

Sampling

- 13 points/ESU
- 3 leaves/point
- 6 replicates/leaf

- Propagation of uncertainties due to within-ESU variability of gap fraction and use of different methods
- Experiments to define 'representative' relative uncertainties due to levelling and classification

DHP						
Angle/levelling (σ_{lev})	According to Origo et al. (2017), no important differences (2%) with hand-levelling techniques	2%				
Methods (σ_{meth})	Standard error of LAI calculated using different methods (CEV6.1, CEV5.1, Miller)	5% (LAIeff), 7% (LAItrue)				
Sampling (σ_{sam})	Standard error of mean gap fraction over the ESU, propagated though measurement equations	Derived per ESU				
Operator classification (σ_{op})	Uncertainty due to operator decision on the classification in CAN-EYE	11% (LAIeff), 12% (LAItrue)				

Barrax

IRLS (iteratively reweighted least squares) - FAPAR

Discarding:

- A1E1 to A1E7 (DHP & LICOR)
- P1E5 & P1E6 (LICOR)
- M1E1 to M1E6 (LICOR)
- R1E1 (LICOR)

Barrax

IRLS (iteratively reweighted least squares) - LAIeff

- Maps with IRLS 5x5 km² (NDVI) Barrax

The function is extrapolating Good confidence High confidence

39°4'N

39°3'N

39°2'N

2°5'W

2°5'W

39°4'N

39°3'N

39°2'N

٥

+ + +

Network Visibility:

TERN

NEON

esr

LTER

- Sitios bien caracterizados que siguen un riguroso protocolo de adquisición de medidas para validar al menos 3 productos de satélite y estimaciones de modelos de transferencia radiativa.
 - Estos sitios tienen que ser capaces de realizar operaciones de adquisición de datos de forma activa y por un largo periodo de tiempo, siendo su infrastuctura financiada por el grupo encargado de mantenerlo.

https://lpvs.gsfc.nasa.gov/LPV_Supersites/LPVsites.html

NCC

ForestGeo