Teledeteccion, Medio Ambiente y Cambio Global (2001) 275-278

DETERMINATION SEVERITY OF BURN
USING NEURAL NETWORK AND LANDSAT ™

K. R. AL-RAwI, J. L. CASANOVA and M. LOUAKFAOUI
kamal@latuv.uva.es

Laboratorio de Teledeteccion, LATUYV,
Facultad de Ciencia,
Universidad de Valladolid,
47071 Valladolid

RESUMEN: Un sistema automatico de cartografia de dreas quemadas usando imagenes Landsat TM ha sido
desarrollado. Teniendo solo el limite de la zona del incendio, el sistema es capaz de determinar la severidad
de las quemas. El mapa de la severidad de las quemas muestra la textura del area quemada, que refleja la
topografia afectada y el estado de la biomasa.

La red neuronal Supervised ART-I, ha sido empleada, las bandas 3,4 y 5 han sido usadas, tanto imagenes
tomadas después del incendio como imédgenes multitemporal han sido incorporadas a la red.

Usando diferentes tamanos de conjuntos de aprendizaje y diferentes parametros dindmicos se ha compro-
bado el rendimiento del sistema.

ABSTRACT: An automatic burned area mapping system with LandsatTM has been developed. Given only the
boundary of the burned area, the system can determine the severity of burns. Burn severity map shows the
texture of burned area, which reflect the affect of topography and biomass status.

The Supervised ART-Il neural network has been employed. Bands 3, 4, and 5 have been used. Post-fire, as well
as multi-temporal images have been incorporated in to the network.

Using different-sized training sets and different dynamic parameters have tested system performance.
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INTRODUCTION decade. However, they have not been employed for fire

Burned area mapping by means of remote sensing monitoring with the exception of the recent work by [2-
data is an active field of research among scientists. Data ~ 4]. Burned Area Mapping System (BAMS) and Fire
from the National Oceanic and Atmospheric Detection System (FDS) has been developed in [2].
Administration (NOAA) Advanced Very High Integrated Fire Evolution Monitoring System (IFEMS),
Resolution Radiometer (AVHRR), as well as the Landsat which integrate both BAMS and FDS for monitoring fire
TM images are widely used in this task. Different  evolution, has been developed in [3]. IFEMS has the ability
approaches have been reported in the literature for burned to differentiate among active fire, burned area, area
area mapping using Landsat. TM. Visual inspection beneath flames, and area that burned completely between
using false colour composites has been employed by [7] two consecutive images. The IFEMS has been applied
for mapping burned areas in Spain. Regression analysis for monitoring multi-fire phenomena in Spain [4]. These
has been employed by [8] for mapping burned areas in articles deal with NOAA-AVHRR and oriented for
Oregon, USA. Maximum Likelihood Classifier (MLC)  monitoring fire evolution taking the advantage of relatively
has employed by [10] for fire scar detection in Amazonia. high temporal-resolution of the satellite. The low resolution
Principle Component (PC) analysis and MLC have been of NOAA-AVHRR (1.1x1.1km at nadir) does not meet
employed by [11]. [18] Employed Kauth-Thomas and  the user demands for mapping burned area. To our
PC analysis for burned area mapping in Arizona, USA. knowledge, ANNs have not been used for mapping burned

Artificial Neural Networks (ANN) have been areas using Landsat TM imagery, which its spatial-
employed extensively in remote sensing tasks in the last 30x30m) meets most user demands.
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OBJECTIVES

This study has been conducted to build an automatic
burned area mapping system with Landsat TM images
using Supervised ART-II ANN [1]. The system has the
ability to determine the severity of burn at pixel level by
knowing only the boundary of the burned area.
Determination the burn area at pixel level of Landsat
TM images by sending personal team to the field is
tedious task. Determination the severity of burn is even
harder.

System performance will be tested by means of
different dynamic parameters. The system will be
evaluated using post-fire together with multi-temporal
images.

STUDY AREA

The study area is a large fire in Millares, the province
of Valencia, which is located on the Mediterranean coast
of eastern Spain.

DATA

Landsat TM images (a scene of 901x1181 pixels
included the fire under study) correspond to June 29",
1994 and August 19", 1994 have been employed for the
multi-temporal case. While Landsat images correspond
to August 19 have been employed for post-fire case. The
fire under consideration occurred July 4-13, 1994.
Landsat TM, bands 3, 4, and 5 have been employed.

Ground truth data for burned areas has been adapted
from the Spanish Forest Authority (ICONA). They
reported only the boundary of the fire using the global
positioning system. Every pixel inside the determined
area was considered to be burned. Such assumption
neglect the affect of topography, the condition of biomass
and meteorological conditions, which influence the fire
behaviour leaving some patches slightly burn or even
unburned at all.

SUPERVISED ART-II ANN

The category layer of Supervised ART-1I is divided
into stacks. The number of stacks being equal to the
number of classes. The architecture of Supervised ART-
1l is shown in figure 1.

Training phase
The choice function is computed for all the
committed category nodes for all stacks;
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where W, are the weights, which connect each category
node g in each stack k with all input nodes i, M is the
dimension of the normalized input vector A[0,1], C(k)
is the number of committed nodes in the stack number
k, L is total number of classes, and is the choice
parameter (0c>0). The notation (aAw) means min(a, w)
in fuzzy logic. The maximum choice value node for each
stack is determined. These are the candidates of their
stack to represent the current input. The winning node
among these candidates is the node with the maximum
choice value.

Resonance occurs if the winning node matching
value is greater or equal to the predetermined vigilance
parameter p [0,1];

2M

YA, Aw )M 2 p

i=1

If both resonance and class matching are occurred
the winning category node should be trained;

wie = BA, Aw S+ (1= Bw si =1..2M

where 3 [0,1] is the dynamic learning rate. Otherwise,
the current stack will present its second highest choice
value as its candidate. Candidates of other stacks are
unchanged. Finally, either one of the committed category
nodes can represent the current input (resonance and
class matching occur) or a new node should be
committed. In the later case, the input vector is assigned
to the weight vector of the newly committed category
node (fast learning mode fB=/).
”
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Figure 1. Architecture of Supervised ART-II.




New category node should be committed from the
stack that represents the input features when all its nodes
fail to represent the current input. This is because all
other nodes of other stacks will not pass class matching.
For more details about Supervised ART-II, please see

[1].

Testing phase

The stack number K, which has the highest choice
value category node, represents the class code b of the
current input;

b=K =k|max({T, , };j, =1.C(k):k =1..L|

METHOD

During training phase, for each pixel, the normalized
values [0,1] for band 3, band 4, band 5, and their
complements are incorporated to the input layer of the
neural network. At the same time the class code b of the
pixel is incorporated to the memory field of the stacks
to high light the correspond stack. Therefore, in the post-
fire case the size of the input layer is 6 nodes, while in
the multi-temporal case its size is 12 nodes. At the end
of the training phase, all weights of the network are fixed.
The number of category node, which each of them
represents a subclass is determined.

During the testing phase the normalized values and
their complements for all mentioned bands are
incorporated to the network. The choice function will
be computed for all category nodes. The stack number
of the node that scores the highest choice value represents
the class code of the current pixel.

SEVERITY OF BURN

Burn severity map is constructed through training
the network with different sizes of training samples. The
network has been trained with 3000, 2000, 1500, 1000,
800, 600, 500, 400, 350, 300, 250, 200, 150, 125, and
100 training samples. Number of burned pixels in all
above training samples is fixed at 50 pixels. Only pixels
with high severity of burns can be captured when the
network is trained with large training sample. As training
sample decreases pixels with less severity of burned can
be mapped. The performance for mapping burned area
has increased from 32.59% to 81.75% training with 3000
and 100 pixels, respectively. The grey level of the newly
mapped pixels should be proportional to the training
sample to highlight the severity of burn.

The burn severity map shows the textures of burned
area (figure 2). Four selected areas of the burn severity
map have been magnified to show clearly the detail
textures of the burned area (figure 2—a, b, ¢ & d). The
burn severity map reflects the topography and the

condition of biomass, while the assumed map, which
depends on the boundary of the burned area, is not (fi-
gure 3). Burn scars show variation in shape and topology.
They are “irregular, finger-like, have island and detached
outliers (spots)” [6]. The texture of burn severity map
shows these structures clearly.
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Figure 2. Constructing fire severity map using post-
fire images. Fire severity map shows clearly the
texture of the burned area. Selected areas have been
magnified to highlight the detail texture of the burned
area.

Figure 3. The assumed burned area. It has been
determined by determination of the boundary of the
area using Global Positioning System.

Burn severity map also has been constructed using
multi-temporal images (figure 4). It does not show the
texture of burned area clearly as that of post fire case
(figure 2), however, the main features of the texture is
in match with both severity maps.




The dynamic learning rate f=0.25 and the vigilance
parameter p=0.98 have been employed. More details
about mapping burned area and construction of severity
of burn can be found in [5].

Figure 4: Constructing fire severity map using
multi.-temporal images. Fire severity map using
multi-temporal images is not good as post-fire
images. However, it shows that the main features
of burned area texture are similar to that of post
fire.

CONCLUSIONS

Burn severity map can be constructed through
training the network with different sizes of training
samples, which conclude a fixed number of burned
pixels. Only pixels with high severity of burns can be
captured when the network is trained with large training
sample. As training sample decreases pixels with less
severity of burned can be mapped. The grey level of the
newly mapped pixels should be proportional to the
training sample to highlight the severity of burn.

Post-fire images are recommended for burned area
mapping in simple terrain, while multi-temporal images
must be employed for complex terrain in order to
eliminate the effect of the topography.
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